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Monte Carlo simulations of chain conformations in restricted spherical volumes with an increasing
radius were performed on a tetrahedral lattice (ca 2 700 to 9 200 lattice sites) at relatively high den-
sities of the occupied lattice sites. A simultaneous self-avoiding walk together with the equilibration
algorithm similar to that of Siepmann and Frenkel were used to create the equilibrated multi-chain
conformations. (a) A series of simulations was carried out for a constant average segment density,
<gS> = 0.52, together with the three values of the radius of the sphere, R = 10 l, 12.5 l and 15 l
(l is the lattice distance), and various numbers of chains, N ∈  <15, 86>, and chain lengths, L ∈
<31, 163>. The results give information on the system behavior and on the effects of: (i) multi-chain
conformational correlations, which depend both on N and L, (ii) the L-dependent chain flexibility,
and (iii) R-dependent external geometrical constraints. Another two series of data: (b) for a constant
average segment density, <gS> = 0.36, a constant N = 21, and L proportional to R3, and (c) for
<gS> = 0.36, L = 47 and N proportional to R3, are shown to give a supplementary detailed informa-
tion on conformational behavior of individual chains. Various physical quantities (e.g. the densities
of chain free ends, gF(r), or distributions of the tethered end-to-the free end distances, ρTF(rTF), etc.)
were calculated in the course of computer simulations and their shapes and physical significance is
discussed with respect to the changing values of N, L and R.

Formation of block copolymer micelles from copolymer AB, or ABA in selective sol-
vents (i.e. solvent for one type of blocks, A, and a non-solvent for the other type of
blocks, B) is an interesting phenomenon, which plays an important role both in macro-
molecular and colloid chemistry. Structure and properties of polymeric micelles are
controlled by a complex and intricate enthalpy-to-entropy balance in a multicomponent
system1,2.

In the last two decades, a considerable effort has been devoted to develop a success-
ful thermodynamic theory which would explain and possibly also predict details of the
behavior of micellar systems in a sufficiently broad region of temperatures, solvent and
copolymer concentrations, copolymer compositions and their molar masses. Several
theoretical approaches have been recently published3 – 10. They are able to explain
general principles of micellization equilibria. However, a full quantitative agreement
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with reliable experimental data on well-characterized and sufficiently monodisperse
micellizing copolymer systems has never been achieved in a broad range of experimen-
tal conditions due to various approximate assumptions that had to be adopted by those
theories.

Great achievements in computer technology in recent years enabled fairly realistic
numerical simulations of a broad spectrum of physical and chemical phenomena. Re-
liable Monte Carlo simulations of polymeric systems are at present quite common11 – 15.
Computer simulations of block copolymer micellization processes are however quite
rare due to the enormous complexity of the problem and to extremely high demands on
computer memory and speed.

Mattice et al. in their seminal works16 – 18 were able to simulate a spontaneous forma-
tion of multimolecular micelles without any limiting assumptions on the behavior of the
system. They studied diblock (10A/10B segments) and triblock (5A/10B/5A segments)
copolymers in a selective solvent for A blocks. Papers by Mattice et al. are to our
knowledge the most rigorous and successful theoretical studies of block copolymer
micellization published so far. The authors did not study any details concerning soluble
or insoluble block arrangements as their chains were too short for that type of investi-
gation.

In our previous paper19, we have started a systematic Monte Carlo study of insoluble
block conformations in micellar cores. We study conformations of tethered chains in
small volumes at high densities. Results of numerical simulations provide information
which may be used for thermodynamic description of micellizing systems and for inter-
pretation of physical processes proceeding in micellar cores (such as excitation energy
migration20 – 23, etc.).

In the first paper19, we have presented a selected part of results of simulations of
tethered chain conformations in a spherical cavity containing 2 718 lattice sites on a
tetrahedral lattice. The access to a more powerful computer DEC 5000/200 enabled us:
(i) to perform computations for systems which we could not study earlier (i.e. for cer-
tain combinations of chain numbers, N, and chain lengths, L, for which a high percent-
age of excluded conformations lead to extremely high computational times on PC 486
– typically several weeks), and (ii) to increase the volume of the spherical cavity up to
300% and to study the influence of the core radius, R, on chain conformations.

Having described the details of simulation technique and the physical meaning of
calculated functions earlier19, we can go deeper into details in the discussion of the
thermodynamic behavior of the system.

METHOD

Principles of the simulation technique have been described in details in our previous
paper19: (i) Conformations of N tethered chains (each containing L segments) in a re-
stricted spherical volume are generated by a simultaneous self-avoiding walk on a te-
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trahedral lattice (with a distance l of the lattice sites). All chains start in a narrow
spherical surface layer. “Thermal equilibration” of the system, which is necessary to
remove a bias of the steadily increasing density of occupied lattice sites during the
simultaneous growth of many chains and to circumvent the “attrition problem”24, pro-
ceeds in two steps: (ii) A randomly chosen chain is disregarded and a new chain is
grown again in the dense system from a random surface site. This step is repeated
(N2/2) times. (iii) To reach the equilibrium of the system, the step (ii) is repeated again
(N2/2) times and the Rosenbluth weights25, w i

(k) in each step i, and weights of resulting
chain conformations k, Wk =∏ 

i = 1

L

wi
(k) , are evaluated, (w 1

(k)= 1, k = 1, 2, for an old, or a new
conformation,  respectively). The new conformation of the chain is accepted according
to the modified Metropolis criterion26 for the factor (Wnew/Wold). A system consisting of
the last N accepted chains is considered as one statistically uncorrelated multi-chain
conformation which mimics well a randomly chosen micellar core in the thermal equili-
brium of the studied micellar system.

The simulation procedure is a specific modification of the algorithm proposed by
Siepmann ad Frenkel15 for dense polymer systems. It is a suitable simulation technique
for systems of tethered chains. We have tested also the tree-bonds “crankshaft” motion
(a modification of the Verdier algorithm27) in the studied system, but the latter was
relatively slowly convergent and thus much less efficient than the previous one.

In this paper we consider only the geometrical excluded volume effect of segments.
An additional effect of interaction parameters and the trans/gauche rotational potentials
is a subject of an ongoing study and the results will be presented in the next communi-
cation.

The presented distributions were in most cases calculated on the basis of 104 statisti-
cally uncorrelated multi-chains arrangements (5 . 103 arrangements were used for
R = 15 l, since those simulations took typically several days on DEC 5000/200). A
simulation of each multi-chain arrangement starts by a totally independent simulta-
neous self-avoiding walk and continues by the above described equilibration, which
represents a generation of N2 new chain arrangements (generally 104 to 105 segment
positions). It means that the data are are based on 108 to 109 successfully generated seg-
ment positions.

Physical nature of the problem does not require to use the periodic boundary conditions.
Calculations were performed on a DEC 5000/200 computer. An original program

was written in FORTRAN 77. The longest calculations took up to two weeks of the
CPU.

RESULTS AND DISCUSSION

In our previous calculations19 we have shown that the actual segment density, gS(r), asa
function of the distance from the sphere center, r, is almost constant for higher densities
of the occupied lattice sites, <gS> >  0.36, and for longer chains (depending on <gS>
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and N; typically L > 40, for <gS> = 0.36) and does not nearly depend on the surface
density of the tethered chain ends, <gint>. This holds generally within the whole sphere,
except the part in a narrow surface region. Such a situation is typical for spherical cores
of multimolecular copolymer micelles in selective solvents. It is an experimentally es-
tablished fact that micellar cores are uniform1,28 and the segment density inside the core
is constant (only in the core/shell interfacial region, the insoluble and soluble blocks are
partially intermixed). In this paper we present results that model real cores of polymeric
micelles in solutions.

The aim of this paper is to study the influence of geometrical restrictions on confor-
mations and orientations of individual tethered chains and their parts. Conformations of
chains in micellar cores depend on the number of chains, N, chain lengths (i.e. the
number of segments, L) and the number of all lattice sites Ntot in the sphere (i.e. the
volume of the sphere, Vsp = (4/3) π R3). In the preceding paper19 we have shown that the
average segment density, <gs> = (N L/Ntot), predetermines to a certain degree the beha-
vior of the system. Nevertheless, this factor alone – even though very important – does
not control all properties of the system. Results for constant values of the average seg-
ment density, <gS>, suggest that the calculated conformational characteristics of chains
depend both on N and L. Unfortunately, values of (N L) had to be kept constant in our
previous calculations (in order to get the constant density) and we were unable to study
independent effects of varying N and L. In this paper we vary also the sphere radius R
(i.e. the number Ntot) and we can thus study an indirect effect of the chain length, L, at
constant N and constant <gS>. This enables us to investigate the influence of an in-
creased conformational flexibility of longer chains on the structural characteristics of
micellar cores.

For the type of simulations, where several parameters (N, L and Ntot) are varied, and
results depend on the average segment density, <gS> = (N L/Ntot), on the ratio (L/Ntot),
etc., an interpretation of the results must be done with a high care. A complete presen-
tation of the data for too many combinations of N, L and Ntot would exceed the size of
a reasonable paper. To offer the most comprehensive outline of the behavior of tethered
chains in restricted volumes at high segment densities, we have chosthe following sets
of data:

a) First we present a series of selected results for three values of the core radius,
R = 10 l, 12.5 l and 15 l, and for a constant average segment density, <gS> = 0.52. (The
precise value of <gS> is 0.515 ± 0.002; small variations in <gS> are caused by the fact
that both N and L assume only integer numbers.) The same set of several increasing
surface densities of tethered ends, <gint> = (N/Nint), is used for all R values; Nint is the
number of the lattice sites in a narrow spherical surface layer (in the core/shell inter-
face). Since Ntot is proportional to R3 and Nint to R2, the ratio (L/R) is kept constant in
simulations, corresponding to the same surface density. A combined effect of (i) the
decreasing chain stiffness with increasing  L, and (ii) the decreasing importance of
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geometrical constraints with increasing radius of the cavity, R, will be discussed for this
series of data.

b) Second, we give data for three increasing values of R and L and for a constant
segment density, <gS> = 0.36, and a constant number of chains, N= 21. In that case, the
ratios (<gS>/N) and (L/R3) are constant and L is therefore proportional to R3.

c) The last series gives data for increasing R and for constant values L = 47 and <gS>
= 0.36. Here the number of chains, N, increases, since it depends on R3.

Dependences of calculated structural characteristics of the system on  L, for constant
<gS> and N, describe reasonably well the influence of varying chain stiffness which
decreases with increasing chain length,  L, whereas the dependences on R (i.e. on Ntot)
for constant <gS> and L describe reasonably well the influence of geometrical con-
straints. We are aware, however, that each of the shown functions describes in full rigor
only the behavior of the system under the given combination of parameters used in a
particular simulation.

Several distribution functions, which describe conformations of individual chains in
micellar cores, may be easy calculated during numerical simulations: (i) distribution of
the free-to-tethered chain end distances, ρTF(rTF), (ii) distribution of the distances of the
centers of gravity of chains from the tethered ends, ρTC(rTC), (iii) distribution of the
free end-to-the center of gravity distances, ρFC(rFC) and (iv) distribution of radii of
gyration of individual chains, ρR(Rg). Three following functions show collective struc-
tural characteristics of chains in cores: (v) segment density, gS(r), as a function of the
distance from the core center, r, – not shown in this paper, (vi) density of the free ends,
gF(r), and (vii) density of the gravity centers, gC(r). Orientations of individual chains in
an equilibrium micellar core may be further described by angular distributions of
various structural characteristics (e.g. directions of the end-to-end vectors etc., with
respect to the radial orientation), and by projections of various distance-vectors into the
radial direction, or into the direction of the first-to the second segment connection. The
angular distributions and the distributions of various projections into the selected direc-
tions are subjects of the next paper of this series29.

Distribution of the End-to-End Distances and the Related Functions

Figures 1a – 1c show distributions of the tethered-to-free chain end distances, ρTF(ρTF),
for three spherical micellar cores with increasing radius, R = 10 l, 12.5 l and 15 l. Four
curves describing behavior of various multi-chain systems (differing in N) are shown
for each R-value. A constant average segment density <gS> = 0.52 is kept for all 12
curves. In order to keep a constant value of <gS>, an increase in the number of chains,
N, (in each series of curves for a particular R) is accompanied by a concomitant de-
crease in the chain length, L. Each triplet of curves, i.e. curves 1 in Figs 1a – 1c, curves
2, 3 and 4 in all three figures, correspond to the same surface density; <gint> = 0.45 (1),
0.35 (2), 0.25 (3) and 0.15 (4).
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Two more figures (Figs 1d and 1e), each showing three selected curves for a con-
stant average segment density, <gS> = 0.36, and an increasing core radius, R, are sup-
plemented to deepen the insight into the conformational behavior of chains in micellar
cores. In Fig. 1d, the number of chains, N, is constant and the chain length, L, increases
together with R to secure a constant value of <gS>. In Fig. 1e, the chain length, L, is
constant and the number of chains varies to keep a constant <gS> for increasing values
of R.

A complex conformational behavior which is caused by: (i) the increasing chain
flexibility with increasing chain length, L, and (ii) the slightly decreasing importance of
external geometrical constraints with increasing core radius, R, is clearly evident from
a comparison of individual curves in Figs 1a – 1e. For a detailed discussion of their
shapes, it is necessary to realize that the magnitude of ρTF(ρTF) does neither directly
depend on N, nor on L – the function ρTF(rTF) is a normalized end-to-end distribution
for one chain. Its magnitude depends however on the term (Ntot)

−1, since the values for
given distances rTF are normalized by numbers of all lattice sites in narrow partial
spherical layers of the radius rTF and the thickness ∆ = 1.25 l – see Fig. 2 and also the
details of the calculation procedure in ref.19.

The following findings are of interest:
a) The shape of the ρTF(rTF) curves is essentially the same for all studied systems,

regardless of particular values of N and L. The curves show quite pronounced maxima
between rTF = 5 l and 7.5 l. They differ considerably from distributions for free flexible
chains with a negligible excluded volume effect and remind those for self-avoiding
isolated chains. The shape of ρTF(rTF) curves in the studied system with maxima posi-
tions which depend only very little on L, is an understandable result of a combined
effect of external geometrical constraints (a small spherical volume of the core)
together with a relatively high chain rigidity (short chains on a tetrahedral lattice, i.e.
on a lattice with a low coordination number, behave as quite stiff chains) and the ex-
cluded volume effect.

b) In a given core (with a constant radius, R), maxima are more pronounced for
shorter chains due to the already mentioned restricted flexibility of shorter chains.

c) The longer are the chains, the more important are the fractions of “stretched”
chains with rTF  → 2 R. This effect is very clearly evident for R = 10 l and L = 93. In
that case, the limiting value of ρTF(rTF  → 2 R) represents ca 30% of the maximum
value of ρTF(rTF). This behavior, which is a relatively straightforward consequence of
external geometrical constraints, precludes a general existence of an “excluded zone”
close to the core surface, where the free ends could not be located (see the further
discussion to Fig. 4 – the density of the free ends as a function of the distance from the
core center, gF(r)). Such an “excluded zone” was theoretically predicted for systems of
chains tethered to a convex surface (located outside the sphere) by Semenov et al.30 on
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the basis of a self-consistent field theory, but it was not confirmed by the subsequent
Monte Carlo simulations for those systems31.

d) With the increasing R-values, all curves become broader and flatter due in a major
part to an increased flexibility of longer chains which had to be used in systems with
higher radii, R, in order to get a constant segment density, <gS>, for all systems, and to
a minor part to less important geometrical constraints.

More information on the conformational behavior of the multi-chain system in a
limited spherical volume may be gained from a comparison of curves in Figs 1a – 1c
with those in Fig. 1d and 1e.

FIG. 1
Distribution function of the tethered-to-free end distances of individual chains in spherical micellar
cores, ρTF(rTF), for two constant segment densities: <gS> = 0.52 (a, b, c) and <g>S = 0.36 (d, e).
Values of the other parameters: a R = 10 l, N/L = 45/31 (1), 35/40 (2), 25/56 (3) and 15/93 (4); b
R = 12.5 l, N/L = 68/40 (1), 53/52 (2), 38/72 (3) and 23/119 (4); c R = 15 l, N/L = 86/55 (1), 67/71
(2), 48/99 (3) and 29/163 (4); d constant number of chains, N = 21 and L = 47, R = 10 l (1), L =
92, R = 12.5 l (2) and L = 159, R = 15 l (3); e constant chain length, L = 47 and N = 21, R = 10 l
(1), N = 41, R = 12.5 (2) and N = 71, R = 15 l (3)
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Figure 1d shows a marked effect of the increasing chain flexibility with increasing L
on the multi-chain arrangements which leads to quite flat distributions for high L (e.g.
an almost uniform distribution for L = 159 and R = 15 l – curve 3 in Fig. 1d. The ratio
of (L/R3) is kept constant for all curves which minimizes an effect of changing geome-
trical constraints with increasing R. Curves for a constant L = 47 and increasing R and
N are shown in Fig. 1e. A comparison of individual curves is slightly surprising. Their
shapes (including positions of maxima) are essentially the same for all three R-values.
Differences in magnitudes of individual curves are caused mainly by the R-dependant
normalization factors (see Fig. 2). The obtained results suggest that the end-to-end dis-
tributions depend mainly on the chain length, L, and do not nearly depend on R. It may
be concluded that the influence of the external geometrical restrictions, even though
very important (it predetermines the general shape of the distribution functions), does
not change fast with increasing R in the region of the studied volumes. Similar conclu-
sions may be drawn from the results concerning the distributions of the radii of gyra-
tion, Rg, (see later).

We would like to emphasize that the presented distributions are angular averages of
the calculated functions for all allowed orientations of the end-to-end distances with
respect to the radial direction. Functions PTF(rTF, ϑ) which describe correlated distribu-
tions of the end-to-end distances and their angular orientations under various conditions,
are a subject of the ongoing studies32.

Figure 3 shows the number fractions of chains with particular end-to-end separations
in equilibrium cores, nTF(rTF), for the same systems as in Figs 1a – 1c. Distributions
ρTF(rTF) and nTF(rTF) may be readily recalculated from each other. The latter distribu-
tion is presented because it gives a better idea of the number-fractions of chains with
given rTF distances.

FIG. 2
A schematic two-dimensional representation of
the evaluation of the R-dependent normalization
factor in functions ρTF(rTF), etc.
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Density of the free-chain-ends within the micellar core is shown in Fig. 4 for the
same systems as in Fig. 1 (all figures with the same structure as Fig. 1 show distribution
functions for the same systems as in Fig. 1). All curves show an evident increase to-
wards the core center. This increase is more pronounced in systems with high numbers
of relatively short chains (i.e. in systems with an elevated surface density of tethered
chains, <gint>) and in systems with small core radii, R. The fraction of the free ends
located close to the surface differs in all cases significantly from zero. In order to get
the number of the free ends, nF(r), in the distance r from the center, the gF(r) value
must be multiplied by the number of the lattice sites in a spherical layer with the radius
r and the thickness ∆ = 1.25 l. The numbers nF(r) are proportional to r2 which means
that the number of the free ends close to the surface is quite important in the studied
system. This result together with the already discussed shape of ρTF(rTF) preclude a
general existence of the “excluded zone” (cf. discussion concerning Fig. 1). A forma-

FIG. 3
Number fractions, nTF(rTF), of chains with given end-to-end distances corresponding to distribution
functions in Figs 1a – 1e
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tion of the “excluded zone” does not seem probable in closed concave systems. Its
existence in systems of polymers grafted to the convex surfaces is rationalized by the
fact that the segment density decreases spontaneously in the perpendicular direction
from the surface and the natural tendency of the system is to minimize its free energy
by a partial stretching of polymer chains and placing them into a less concentrated
region. A similar condition is not met in closed systems.

Figure 4e shows density of the free ends, gF(r), for a constant chain length, L, and
increasing values of N and R. All calculated curves rise with the decreasing distance
from the center, r. Their slopes do not depend on R, however quite a considerable
fraction of chains reaches into the central part of the core in all three cases. Since
ρTF(rTF) does not nearly depend on R, this effect is probably caused by slightly different
angular arrangements of chains in those three systems.

FIG. 4
Density of the free chain ends within a core as a function of the distance from the core center, gF(r),
for the same systems as in Fig. 1
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Distribution of the End-to-Gravity Center Distributions

Three further figures (Figs 5 – 7) show density of the centers of gravity of individual
chains in micellar cores, gC(r), and distributions of the distances of gravity centers from
either the tethered, or the free chain ends, ρTC(rTC) and ρFC(rFC), respectively.

Density of gravity centers, gC(r), for systems with short chains is negligible in the
central region (i.e. for r → 0) and rises quite fast with the increasing r. A clearly
pronounced and sharp maximum is reached fairly close to the surface – in the distance
ca 3 l from the surface. This position is almost independent of R. Then gC(r) drops
steeply to zero for r → R. The initial rise is less steep for larger R, but the final drop
does not nearly depend on R. With the increasing chain length, the curves become
flatter and broader and maxima are shifted to lower r values and the density in the
central region is quite high.

FIG. 5
Density of the gravity centers of individual chains in a spherical core, gC(r), for the same systems as
in Fig. 1
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Interesting shapes show distributions of the tethered end-to-the center of gravity dis-
tances, ρTC(rTC), and the free end-to-the center of gravity distances, ρFC(rFC), (Figs 6
and 7). All obtained curves, ρTC(rTC), are zero for rTC  → 0, then they rise steeply and
reach sharp maxima at rTC ca 4 – 5 l and drop again quite fast to zero. Curves are
broader and asymmetrical (with respect to the maxima positions) for longer chains,
their maxima are shifted to higher rTC and their tails reach into the region of rTC > R.
Distributions ρTC(rTC) in Fig. 6e exhibit a similar behavior as ρTF(rTF) in Fig. 1e: Indi-
vidual curves for a constant <gS>) and L do not almost depend on R.

Distributions of the free end-to-the gravity center distances, ρFC(rFC), are qualita-
tively similar to those for free flexible chains with maxima at rFC → 0. Changes in N,
L and R seem to have a similar effect on the widths of both distributions and on the
heights of their maxima.

FIG. 6
Distribution function of the tethered end-to-the gravity center distances, ρTC(rTC), for the same sys-
tems as in Fig. 1
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A comparison of both types of curves suggests that the “tethered halves” of chains
are partially oriented and stretched into the radial direction in the vicinity of the con-
cave surface and behave as quite “stiff” chains as compared with the “free halves”
which are more coiled and oriented fairly random into all possible directions (a consid-
erable fraction of chains may turn back towards the tethered end).

Very interesting conclusions may be drawn from a comparison of the maxima posi-
tions in gC(r) and ρTC(rTC). The highest density of the gravity centers, gC(r), is in the
distance ca 3 l from the core surface (in all systems), whereas the maximum positions
of ρTC(rTC) are attained for rTC = 5 l. This means that despite the preferential radial
orientation of chains (mainly of their “tethered halves”) a fairly considerable fraction of
chains decline appreciably from the radial direction. This finding was also confirmed
by calculations of the angular distributions – see next part of this series29.

FIG. 7
Distribution function of the free end-to-the gravity center distances, ρFC(rFC), for the same systems
as in Fig. 1
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Other Conformational Characteristics

Distribution of the free-end-pair-distances of different chains, ρFF(rFF), and correspond-
ing number fractions of pairs with particular rFF values, nFF(rFF), are shown in Figs 8
and 9. These functions are very important for interpretation of experimental time-re-
solved fluorescence anisotropy decays in micellar systems with the end-tagged co-
polymers33,34. Values of ρFF(rFF) for given rFF are normalized by numbers of all
possible pairs of the lattice sites separated by (rFF ± ∆) – see previous paper19, and
therefore a constant function ρFF(rFF) represents a fully random distribution of the free
ends of different chains.

Fairly random distributions of the free-end-pairs, ρFF(rFF), were obtained in systems
with a large R = 15 l. The degree of the random character of that distribution in a broad
range of rFF is controlled mainly by the external constraints and it is therefore very

FIG. 8
The pair distribution function of the free-end-distances of different chains, ρFF(rFF), for the same sys-
tems as in Fig. 1
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sensitive to changing R (all the other calculated functions are more sensitive to changes
in <gS>, N and L than in R).

Figure 10 shows distributions of the radii of gyration of individual chains, ρR(Rg).
These distributions are quite narrow with maxima at relatively low values of Rg (as
compared with those of free flexible chains) and are almost symmetrical with respect to
the maxima positions. They depend mainly on L and are insensitive to small changes in
R – see Fig. 10e.

Scaling Properties

The average values of various conformational characteristics of individual chains
(based on the distributions presented above) are given in Tables I, II and III for cores
with R = 10 l, 12.5 l and 15 l, respectively. They give a compressed and comprehensive

FIG. 9
The number fraction of the free-end-pairs with given distances, nFF(rFF), for the same systems as in
Figs 8a – 8e
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quantitative characterization of the studied systems. Since the average values were cal-
culated from the already discussed distributions, the qualitative trends agree with the
previous conclusions and will not be repeated. Nevertheless, dependences of various
root-mean-square average distances on the chain length, L, give quite important sup-
plementary information on the system behavior. The selected ln (Rg/l) and ln
(<rTF

2>1/2/l vs ln L plots are shown in Fig. 11. They are almost linear in the region of L
which was accessible for our simulations (they are slightly curved for the lowest  L).

Scaling parameters, a, do not nearly depend on R, but they are different for ln (Rg/l),
a = 0.41 ± 0.01, and ln (<rTC

2>1/2/l), a = 0.33 ± 0.01 and are very low in comparison
with the value for the self-avoiding random walk. The scaling parameter for the root-
mean-square average end-to-end distance for long isolated chains is a = 0.588
(refs11,35,36) for a three-dimensional self-avoiding walk at any type of the lattice (for an

FIG. 10
Distribution of the radii of gyration of chains in spherical cores, ρR(Rg), for the same systems as in
Fig. 1

Conformations of Insoluble Blocks 797

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



TABLE I
Values of the root-mean-square averages and averages of the absolute values of: end-to-end dis-
tances,  <(rTF)2>1/2 , tethered/or free end-to-gravity center distances,  <(rTC)2>1/2 , <(rFC)2>1/2 , re-
spectively, and values of the radius of gyration. Rg for systems studied in the core with the radius
R = 10 l, (105 cores); N is the number of the tethered chains and L is the number of their seg-
ments

<gS> = 0.5 <gS> = 0.36

N/L 15/93 25/56 35/40 45/31 21/47

√<r TF
2 > 11.61 10.15 8.96 8.15 9.71

√<r TC
2 > 7.57 6.31 5.44 4.89 5.94

√<r FC
2 > 6.34 5.43 4.76 4.28 5.17

Rg 4.86 4.00 3.45 3.09 3.76

< | rTF | > 10.97 9.55 8.44 7.70 9.16

< | rTC | > 7.27 6.05 5.22 4.71 5.71

< | rFC | > 5.94 5.07 4.46 4.02 4.84

FIG. 11
The ln–ln plot a of the radii of gyration of individual chains, Rg, and b of the end-to-end root-mean-
square distances, <(rTF)2>1/2, versus the chain length, L, for a constant <gS> = 0.52 and R = 10 l (1),
R = 12.5 l (2), and R = 15 l (3)
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TABLE II
The same average values as in Table I for systems studied in the core with the radius R = 12.5 l, (105

cores)

<gS> = 0.5 <gS> = 0.36

N/L 23/119 38/72 53/52 68/40 21/92 41/47

√<r TF
2 > 13.80 11.89 10.57 9.55 13.05 10.36 

√<r TC
2 > 8.87 7.34 6.42 5.73 8.18 6.25

√<r FC
2 > 7.48 6.35 5.58 5.00 7.00 5.45

Rg 5.63 4.62 4.02 3.58 5.17 3.90

< | rTF | > 13.00 11.16 9.93 9.00 12.28 9.77

< | rTC | > 8.49 7.02 6.15 5.51 7.84 6.01

< | rFC | > 6.98 5.92 5.21 4.68 6.54 5.10

TABLE III
The same average values as in Table I for systems studied in the core with the radius R = 15 l,
(5 . 104 cores)

<gS> = 0.5 <gS> = 0.36

N/L 29/163 48/99 67/71 86/55 21/159 71/47

√<r TF
2 > 16.32 14.09 12.48 11.36 16.42 10.88 

√<r TC
2 > 10.48 8.72 7.61 6.85 10.52 6.53

√<r FC
2 > 8.84 7.51 6.59 5.94 8.87 5.64

Rg 6.63 5.45 4.73 4.25 6.65 4.02

< | rTF | > 15.34 13.20 11.71 10.67 15.47 10.27 

< | rTC | > 10.01 8.33 7.27 6.56 10.07 6.28

< | rFC | > 8.23 6.98 6.14 5.54 8.27 5.28
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intersecting random walk, a = 0.5). These results are in a good agreement with the
previous conclusions: The conformational behavior of individual chains in relatively
small micellar cores at high segment densities is strongly affected by severe geometri-
cal constraints. This is manifested by low values of scaling parameters in various ln–ln
plots. The external constraints are important and relax only very little with increasing
core radius. This is the reason why values of scaling parameters (and other structural
characteristics) do not nearly depend on R.

There is an interesting question concerning changes in the conformational behavior
of the studied system in a broad range of segment densities and a comparison of various
distributions at relatively high densities with those for one, two, etc. tethered chains in
an almost empty spherical volume. Systems with low numbers of chains do not model
realistic micellar cores and a detailed comparison will be published elsewhere. Never-
theless we feel that a brief general remark in that respect may help to elucidate the roles
of: (i) the primary effect of external geometrical constraints and (ii) an induced inter-
chain correlation effect in dense and constrained multi-chain systems.

It is well-known that the conformational characteristics of chains in dense polymer
systems are almost identical with those of corresponding isolated chains (i.e. in an
infinitely diluted solution) under the ϑ -conditions.  A question arises if a similar con-
formational behavior is conserved also in restricted geometries, i.e. if certain properties
of tethered chains in (a) dilute; and (b) dense and constrained systems are similar to
each other.

Results of simulations suggest that the conformational behavior of short and rigid
chains does not change much with the changing segment density, whereas the confor-
mational characteristics of dense long chain systems differ considerably from the con-
strained few chain systems.

In all cases, the role of external geometrical constraints is more important than the
role of the inter-chain correlations which may be generally expected in dense multi-
chain systems.

CONCLUSIONS

a) A significant effect of geometrical constraints on chain conformations is evident
from comparisons of all calculated distributions with those for free flexible chains.

b) Results of calculations for various R show that in relatively small cores studied in
this paper, the effect of external geometrical constraints on the behavior of the multi-
chain system is severe and relaxes only little with the increasing sphere radius R.

c) The data for systems with increasing R (and L proportional to R3) allow to study
the effect of the increasing chain flexibility with increasing chain length, L, in cores
with an approximately constant effect of geometrical constraints. This effect is quite
significant and almost all calculated distribution functions are more sensitive to change-
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s in the chain length, L, than to changes in the number of chains, N, or the sphere
radius, R.

d) It may be inferred from the simulated data that the “tethered halves” of chains are
preferentially radially oriented and are more “stiff” than the “free halves”, which are
quite randomly oriented in space with respect to the gravity centers.

e) The ln–ln plots of the end-to-end distances, versus the chain length, L, are slightly
curved even in a relatively narrow range of the studied L, and the average scaling
parameter, a ca 0.36, is very low as a result of the severe geometrical constraints.

f) Comparisons of various conformational characteristics of individual chains with
each other suggest that in spite of the preferential radial orientation of chains in cores,
a considerable fraction of chains differ appreciably from the radial direction.

g) Simulated conformational characteristics of individual chains presented in this
paper are suitable approximate functions for the thermodynamic description of block
copolymer micellar systems. In this paper we do not take into account the thermody-
namic interactions which precludes to minimize the Gibbs free energy of the system
and to assess the correct values of micellar parameters. However, general properties
and shapes of many functions, e.g. ρTF(rTF), etc., depend only little on the actual values
of both <gS> and R (in the region of the studied values). Their knowledge is very
helpful for any considerations concerning the thermodynamics of micellar systems.

The authors are very obliged to Prof. P. Munk from the University of Texas at Austin, U.S.A., for
helpful discussions and suggestions concerning the thermodynamic aspects of the system behavior. The
authors thank also to the Ministry of Education of the Czech Republic for the financial support of this
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